Άραγε, πόσα ψηφία του π χρησιμοποιεί η NASA στους υπολογισμούς της; Το ερώτημα αυτό τέθηκε στον Marc Rayman, τον επικεφαλή μηχανικό της αποστολής Dawn.
Σύμφωνα με τον Marc Rayman η NASA για την διαπλανητική πλοήγηση των διαστημοπλοίων της χρησιμοποιεί τα 15 πρώτα δεκαδικά ψηφία του π: 3.141592653589793
Πόσο ακριβείς είναι οι υπολογισμοί με αυτή την προσέγγιση;
Η απάντηση δίνεται με 3 χαρακτηριστικά παραδείγματα:
- Το πιο απομακρυσμένο από τη Γη διαστημικό σκάφος είναι το Voyager 1. Βρίσκεται 20 τρισεκατομμύρια χιλιόμετρα μακριά. Ας θεωρήσουμε έναν κύκλο που έχει ως ακτίνα αυτή την απόσταση ή διάμετρο 40 τρισεκατομμύρια χιλιόμετρα. Ποιο είναι το μήκος της περιφέρειας αυτού του κύκλου; Πολλαπλασιάζοντας την διάμετρο του κύκλου επί τον αριθμό π στρογγυλοποιημένο στο 15ο ψηφίο, όπως γράφεται πιο πάνω, η τιμή της διαμέτρου που θα προκύψει θα έχει απόκλιση από την τιμή που θα προέκυπτε αν μπορούσαμε να πολλαπλασιάσουμε με την ακριβή τιμή του π θα ήταν 4 εκατοστά. Με λίγα λόγια το μήκος της περιφέρειας ενός κύκλου με διάμετρο 40 τρισεκατομμύρια χιλιόμετρα θα ήταν λάθος κατά 4 εκατοστά, όσο το μήκος του μικρού δακτύλου σας.
- Η διάμετρος της Γης είναι 12750 χιλιόμετρα. Το σφάλμα που προκύπτει όταν υπολογίζουμε το μήκος της περιφέρειας του κύκλου με αυτή τη διάμετρο χρησιμοποιώντας μόνο τα 15 πρώτα δεκαδικά ψηφία του π, ισούται περίπου με τη διάμετρο ενός μικρού μορίου.
- Κι ένα τερατώδες παράδειγμα: αν θεωρήσουμε ότι η ακτίνα ενός Ευκλείδειου σύμπαντος είναι 46 δισεκατομμύρια έτη φωτός, τότε πόσα ψηφία του π πρέπει να χρησιμοποιήσουμε για να πάρουμε την περιφέρεια του κύκλου με ακτίνα 46 δισεκατομμύρια έτη φωτός με σφάλμα όσο η διάμετρος του ατόμου του υδρογόνου; Η απάντηση είναι ότι χρειάζονται μόνο 39 ή 40 δεκαδικά ψηφία του π.
Πότε οι μαθηματικοί υπολόγισαν για πρώτη φορά τα 15 πρώτα ψηφία του π, που χρησιμοποιεί η NASA στους υπολογισμούς της;
Πριν από 423 χρόνια. Το 1593 ο Ολλανδός μαθηματικός Adrianus Romanus κατάφερε να υπολόγισει για πρώτη φορά τα 15 δεκαδικά ψηφία του π, χρησιμοποιώντας ένα εγγεγραμμένο πολύγωνο που είχε πάνω από 100 εκατομμύρια πλευρές.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου